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INCREASING AND DECREASING FUNCTIONS 

 

A function f (x) is said to be strictly increasing function on (a, b) if    

x1 < x2 ⇒  f (x1) < f (x2) for all x1, x2 ∈ (a, b) 

 

A function f (x) is said to be a strictly decreasing function on (a, b) if   

x1 < x2 ⇒  f (x1) > f (x2) for all x1, x2 ∈ (a, b) 

Thus, f (x) is strictly decreasing on (a, b) if the values of f (x) decrease with the increase in the values of 

x. 

 

Remember: 

 (i) If f ' (x) ≥ 0 for all x in D (a subset of R), then, f(x) is increasing in D. 

 (ii) If f ' (x) ≤ 0 for all x in D, then, f (x) is decreasing in D. 

 (iii) If f ' (x) ≥ 0 for all x in some open interval (a, b), then, f (x) is increasing [a, b] ∩ D f 

(iv) If f ' (x) ≤ 0 for all x in some open interval (a, b), then, f (x) is decreasing in [a, b]  ∩ D f 

 

EXAMPLES 

1. Show that f (x) = log (sin x) is increasing on (0, π/2) and decreasing on (π/2, π) 

Sol. f (x) = log sin x ⇒ f ' (x) = cot x.  

Now, 0 < x < π/2 ⇒ cot x > 0 ⇒ f ' (x) > 0.  

And, π/2 < x < π ⇒ cot x < 0 ⇒ f ' (x) < 0. 

 

2. Prove that the function f (x) = x3 – 3x2 + 3x – 100 is increasing on R 

Sol. We have f (x) = x3 – 3x2 + 3x – 100  

∴f ' (x) = 3x2 – 6x + 3 = 3 (x – 1)2. Now, x ∈ R  

⇒ (x – 1)2 ≥ 0 ⇒ f ' (x) ≥ 0. Thus, f ' (x) ≥ 0 for all x ∈ R.  

Hence, f (x) is increasing on R. 

 

3. Which of the following functions are decreasing on (0, π/2)? 

 (a) cos x   (b) cos 2x   (c) tan x   (d) cos 3x 

Sol. (a) We have f (x) = cos x ∴f' (x) = – sin x.  

Now, x ∈ (0, π/2) ⇒ sin x > 0 ⇒ – sin x < 0 

 ⇒ f ' (x) < 0. So, f (x) is decreasing on (0, π/2). 

(b) Let f (x) = cos 2x. Then f' (x) = – 2 sin 2x.  
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Now, x ∈ (0, π/2) ⇒ 0 < x < π/2 ⇒ 0 < 2x < π ⇒ sin 2x > 0 

⇒ – 2 sin 2x < 0 ⇒ f' (x) < 0.  

So, f (x) is decreasing on (0, π/2). 

 (c) Let f (x) = tan x. Then f' (x) = sec2x.  

Now, x ∈ (0, π/2) ⇒ sec2 x > 0 ⇒  f ' (x) > 0 

 So, f(x) is increasing on (0, π/2) 

(d) Let f (x) = cos 3x. Then f' (x) = – 3 sin 3x.  

Now, x ∈ (0, π/2) ⇒ 0 < x < π/2 ⇒ 0 < 3x < 3π/2  

⇒ sin 3x can be positive as well as negative  

⇒  f (x) = – 3 sin 3x can be positive as well as negative.  

So, f (x) is neither increasing nor decreasing on (0, π/2) 

 

MAXIMA AND MINIMA 

Maximum Value: A continuous function f (x) is said to have a maximum value for x = a,  

if f (a) is greater than any other value of f (x) lying in small neighbourhood of x = a.  

Minimum Value: A continuous function f (x) is said to have a minimum value of x = a,  

if f (a) is smallest of all f (x) lying in small neighbourhood of x = a. 

 

 

 

 

 

 

The following points shall be very useful 

• If the sum of a few quantities is given, their product is maximum when they are equal. 

• If the product of a few quantities is given, their sum is minimum when they are equal. 

• The arithmetic mean of any number of quantities is greater than or equal to their geometric 

mean. i.e. AM ≥  GM always   

• The point on a curve closest to a given line will be the one at which the tangent is parallel to the 

line given. 

 

Extreme Value: Either a maximum value or a minimum value f (a) of the function f (x) is said to be 

extreme value. 

Note: The tangent at maximum or minimum point of the curve is parallel to x-axis. 
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Stationary Value: If f '(a) = 0, then f (a) is said to be stationary value which need not be an extreme 

value. 

Note: Every extreme value is stationary but every stationary value need not be an extreme value. 

 

Example: Let f (x) = x5 – 5x4 + 5x3 – 1 ⇒  f ' (x) = 5x4 – 20x3 + 15x2 ⇒  f' (0) = 0. 

∴f (0) is a stationary value but f (0) is not an extreme value because f " (0) = 0, f"' (0) ≠ 0. 
 

Greatest Value: The greatest value of a function in an interval (a, b) is either a maximum value of f (x) 

at a point inside the interval or end value (i.e., at x = a or x = b) of f (x) which ever is greater. 
 

Least Value: The least value of f (x) in an interval (a, b) is either a minimum value of f (x) at a point 

inside the interval or an end value (i.e., at x = a or x = b) of f (x) which ever is smaller. 
 

ALGORITHM FOR DETERMINING EXTREME VALUES OF A FUNCTION 

From the above test criteria we obtain the following rule for determining maxima and minima of f (x) 

Step I. Find f ' (x) 

Step II. Put f ' (x) = 0 and solve this equation for x. Let c1, c2…. cn be the roots of this 

equation. c1, c2…. cn are stationary values of x and these are the possible points 

where the function can attain a local maximum or a local minimum So we test the 

function at each one of these points. 

Step III.  Find f " (c1)  

 If f " (c1) < 0, then x = c1 is a point of local maximum. 

 If f " (c1) > 0, then x = c1 is a point of local minimum 

 If f " (c1) = 0, we must find f"'(x) and substitute in it c1 for x. 

 If f ''' (c1) ≠ 0, then x = c1 is neither a point of local maximum nor a point of local 

minimum and is called the point of inflection. 

 If f ''' (c1) = 0, we must find f 4 (x) and substitute in it c1 for x. 

 If f 4 (c1) < 0, then x = c1 is a point of local maximum and if f 4 (c1) > 0, then c1 is a 

point of local minimum. 

 If f 4 (c1) = 0, we must find f 5 (x) and so on. 

  Similarly the values of c2, c3….. may be tested. 
 

Point of inflection: A point of inflection is a point at which a curve is changing concave upward to 

concave downward or vice-versa. 

A curve y = f (x) has one of its points x = c as an inflection point, If f "(c) = 0 or is not defined and if f " 

(x) changes sign as x increases through x = c.  

The later condition may be replaced by f ''' (c) ≠ 0 when f ''' (c) exists.  

Thus x = c is a point of inflection if f '' (c) = 0 and f ''' (c) ≠ 0. 
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Properties of Maxima and Minima  

(i) If f (x) is continuous function in its domain, then at least one maximum and one minimum must lie 

between two equal values of x. 

(ii). Maxima and minima occur alternately, that is, between two maxima there is one minimum and 

vice-versa. 

 

EXAMPLES 

1. Find the maximum and the minimum values of f (x) = x + sin 2x in the interval [0, 2π]. 

Sol. We have f (x) = x + sin 2x. So, f ' (x) = 1 + 2 cos 2x.  

For stationary points, we have  

 f ' (x) = 0 ⇒ 1 + 2 cos 2x = 0 ⇒ cos 2x = –1/2  

⇒ 2x = 2π/3, or 2x = 4π/3  (as 0 ≤ x ≤ 2π ∴ 0 ≤ 2x ≤ 4π)  

⇒ x = π/3 or x = 2π/3.  

Now, f (0) = 0 + sin 0 = 0,  

f (π/3) = π/3 + sin 2π/3 = π/3 + √3/2,  

f (2π/3) = 2π/3 + sin 4π/3 = 2π/3 – √3/2  

and f (2π) = 2π + sin 4π = 2π + 0 = 2π.  

Of these values, the maximum value is 2π and the minimum value is 0.  

Thus the maximum value of f (x) is 2π and the minimum value is 0. 

 

2. Find the maximum profit that a company can make, if the profit function is given by P (x) = 41 + 24x – 

18x2. 

Sol. P (x) = 41 + 24x – 18x2.  

⇒ 
dx

)x(Pd  = 24 – 36x and 2

2

dx
)x(Pd  = – 36.  

For maximum or minimum, 
dx

)x(Pd = 0  

⇒ 36 – 36x = 0 ⇒ x = 2/3.  

Now, 
3/2x

2

2

dx

)x(Pd

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= – 36 < 0.  

Profit is maximum when x = 2/3.  

Maximum profit = (value of P (x) at x = 2/3) = 41 + 24 × (2/3) – 18 (2/3)2 = 49. 



 
_________________________________________________________________________ 

_________________________________________________________________________________________________ 
www.TCYonline.com Page : 5

®Top Careers & You  

 

3. Show that the maximum value of (1/x)x is e1/e. 

Sol. Let y = (1/x)x = x – x. Then log y = – x log x 

∴
y
1

dx
dy = – (1 + log x) or 

dx
dy = – y (1 + log x) 

 And, 
2

2

dx

yd  = – 
dx
dy (1 + log x) – y/x = y (1 + log x)2 – 

x
y

2

2

dx

yd  

 = x – x (1 + log x)2 – x – x / x. = x–x (1 + log x)2 – x – x – 1. 

 For maximum and minimum, 
dx
dy = 0 

 ∴
dx
dy  = 0 ⇒ – y (1 + log x) = 0 ⇒1 + log x = 0 ⇒ log x = –1  

⇒ x = e–1 = 1/e   [as loge A = b ⇒ A = e b ] 

Also, 
e/1x

2

2

dx
yd

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= – 

e/1

e
1 −

⎟
⎠
⎞

⎜
⎝
⎛

2

e
1log1 ⎟
⎠
⎞

⎜
⎝
⎛ + – 

1e/1

e
1 −−

⎟
⎠
⎞

⎜
⎝
⎛  

= – (e–1) –1/e (1 – log e)2 – (e–1) –1/e – 1 

= – e1/e (1 – 1)2 – e1/e + 1 = – e1/e + 1 < 0 

So, x = 1/e is a point of local maximum.  

The local maximum value of y is given by y = (e)1/e 

 

MEAN VALUE THEOREMS 

 
ROLLE'S THEOREM 

Let f (x) be a function such that  

i.  f (x) is continuous in [a, b] 

ii.  f ' (x) exists for every point in (a, b) 

iii.  f (a) = f (b)  

Then, there exists at least one point c ∈ (a, b) such that  

f ' (c) = 0  
 

Interpretation of Rolle's theorem  

Geometric: Let f (x) be a function defined on [a, b] such that the curve y = f (x) is continuous between points 

(a, f (a)) and (b, f (b)); at every point on the curve, except at the end points, it is possible to draw a unique 

tagnent and ordinates at x = a and x = b are equal. Then there exists at least one point on the curve where 

tangent is parallel to x-axis. 
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x = c  f ' (c) = 0 
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Algebraic: Let f (x) be a polynomial with a and b as its two zeros. Then f (a) = f (b) = 0. Also a polynomial 

function is everywhere continuous and differentiable. Therefore by Rolle's Theorem there exists at least one 

point c ∈ (a, b) such that  f ' (c) = 0  x = c is root of f ' (x) = 0 or x = c is a zero of f ' (x). 

Hence, between two zeros of a polynomial f (x) there exists at least one zero of f ' (x) 

 

EXAMPLES 
1. Let f (x) = x (x + 3) e – x/2, then how many values of x exist in (– 3, 0) such that f ' (x) = 0? 

 (a) no    (b) one   (c) two   (d) three  

Sol. The given function is f (x) = x (x + 3) e – x/2. f (x) is continuous in [– 3, 0]. 

 f ' (x) = (2x + 3) e–x/2 – ½ e–x/2 (x2 + 3x) = ½ (6 + x – x2) e–x/2 

 ∴f ' (x) exists in (–3, 0).  

∴f (– 3) = (– 3) (– 3 + 3) e3/2 = 0. f (0) = 0 (0 + 3) e0 = 0.  

∴f (– 3) = f (0) 

 ∴Rolle's Theorem is applicable. At least one x ∈ (– 3, 0) such that f ' (x) = 0 

 ∴1/2 e–x/2 (6 + x – x2) = 0  x = 3, – 2. Only – 2 ∈ (– 3, 0).  

∴The correct answer is (b) 

 
FIRST MEAN VALUE THEOREM ( LAGRANGE'S MEAN VALUE THEOREM ) 
 If f (x) is a function such that   

i. f (x) is continuous in [a, b]   

ii. ii. f ' (x) exists in (a, b) 

 Then there exists at least one point c ∈ (a, b) such that  

f ' (c) = 
ab

)a(f)b(f
−
− , or 

 f (b) = f (a) + (b – a) f ' (c) 

 

Another Form – f (b) = f (a) + (b – a) f ' {a + (b – a) θ}, 0 < θ < 1 

 Let b – a = h, then, f (a + h) = f (a) + h f ' (a + hθ), 0 < θ < 1 

 
ab

)a(f)b(f
−
−  = Slope of AB = Slope of S1 or S2 = f ' (c1) or, f ' (c2) 

 

Geometrical Interpretation of Lagrange's theorem 

If interpreted geometrically, this theorem means that there exists a point (c, f (c)), on the curve y = f (x) at 

which the tangent to curve is parallel to the chord joining (a, f (a)) and (b, f (b)). 

 

x = a x = c2 

Y 

O 

θ 
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TANGENTS AND NORMALS 

 A. Rule to find the equation of the tangent to the curve y = f(x) at the given point P(x1, y1). 

 (i) Find 
dx
dy  from the given equation y = f(x) 

 (ii)  Find the value of 
dx
dy at the given point p(x1, y1), let m = 

)y,x(at 11
dx
dy

⎟
⎠

⎞
⎜
⎝

⎛  

 (iii) The equation of the required tangent is y − y1 = m(x – x1). 

   Remark: If 
)y,x(at 11

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛ = 0    then, the tangent is parallel to Y-axis and its equation is x = x1 

 B. Rule to find the equation of the normal to the curve y = f(x) at the given point P(x1, y1) 

 (i) Find 
dx
dy from the given equation y f(x). 

 (ii) Find the value of ⎟
⎠

⎞
⎜
⎝

⎛
dx
dy at the given point P(x1, y1). 

 (iii) If m is the slope of the normal at the point P, then 

1

1
yy
xxdx

dy
1

=
=

⎟
⎠

⎞
⎜
⎝

⎛
 

 (iv) The equation of required normal is y – y1=m (x – x1) 

   Remark:  If 
)y,x(at 11

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛ = 0, then the equation of the normal at P is x = x1 and 

 if 
)y,x(at 11

dx
dy

⎟
⎠

⎞
⎜
⎝

⎛ = ∞, then the equation of the normal at P is y = y1  

 

Angle of intersection of two curves: By the angle of intersection of two curves, we mean angle 

between the tangents at their common point of intersection. 

Let P be any point of intersection of two curves y = f (x) and y = g (x) and the equation of tangents at P 

are y = m1 x + C1 and y = m2x + C2. 

Then angle between these lines is  

tan θ = ± 
21

2

mm1
mm

1

+

−
 

 

 

 

 

The positive value of tan θ would give the acute angle whereas, the negative value of tan θ would give 

the obtuse angle between the curves. 

y = m2x + c2 y = m1x + c1 

y = f (x) 

y = f (x) 
y = f (x) 

P 

θ 

c2 c1 
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Note:     

1. If the curves touch each other, then m1 = m2, θ = 0 ⇒ tan θ = 0. 

 2. If the curves cut orthogonally, then m1 m2 = – 1, θ = 90o ⇒ tan θ = π/2 

 

EXAMPLES 

1. Show that the condition that the curves ax2 + by2 = 1 … (i) and a'x2 + b'y2 = 1… (ii) should intersect 

orthogonally is that 1/a – 1/b = 1/a' – 1/b'. 

Sol. Let (x1, y1) be the point of intersection of the curves.  

Then ax1
2 + by1

2 = 1… (iii) and a'x1
2 + b'y1

2 + b'y1
2 = 1… (iv).  

Differentiating (i) w.r.t. x, we get,  

 2ax + 2by 
dx
dy = 0 ⇒

dx
dy = – 

by
ax

⇒ m1 = 
)y,x( 11

dx
dy

⎟
⎠
⎞

⎜
⎝
⎛ = – 

1

1

by
ax … (v).  

Differentiating (ii) w.r.t. x, we get  

2a'x + 2b'y 
dx
dy = 0 ⇒ 

dx
dy =–

y'b
x'a
⇒ m2 = 

)y,x( 11
dx
dy

⎟
⎠
⎞

⎜
⎝
⎛ = – 

1

1

y'b
x'a … (vi). 

 The two curves will intersect orthogonally, if m1 m2 = – 1  

⇒ – 
1

1

by
ax x – 

1

1

y'b
x'a = – 1 ⇒ aa'x1

2 = – bb'y1
2 … (vii).  

Subtracting (iv) from (iii), we get, 

(a – a') x1
2 = – (b – b') y1

2 … (vii).  

Dividing (viii) by (vii), we get,  

(a – a') / aa' = (b – b')/bb'  

⇒ 1/a – 1/b = 1/a' – 1/b'  

 

Length of Cartesian Tangent, Normal, Sub-tangent and Sub-normal 

Let (x, y) be any point P on the curve y = f (x) 

Tangent = PT = MP cosec ψ = MP Ψ+ 2cos1  

Tangent, PT = y 
2

dy
dx1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

Sub tangent TM = PM cot ψ = y 
dy
dx . 

Sub normal = MG = PM tan ψ = y 
dx
dy  

 

 

X' 
T O 

Y' 
M G X 

y 

Y 

P (x, y) 

Tangent at P 
Normal at P 

ψ 
ψ 
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ASYMPTOTES 

A Straight line, at a finite distance from origin, is said to be an asymptote of the curve y = f (x) if the 

perpendicular distance of the point P on the curve from the line tends to zero when x or y or both tends 

to infinity. 

Working Rule 

To find the asymptotes of the curve which is -  

 parallel to x-axis -  

Equate the coefficient of highest power of the x to zero.  

If this coefficient is constant, then there is no asymptotes parallel to x-axis (horizontal).  

 parallel to y-axis – 

Equate the coefficient of highest power of y to zero.  

If this coefficient is constant, then there is no asymptotes parallel to y-axis (vertical). 

 

EXAMPLES 

1. For the curve y = 
2x3x5
8x5x2

2

2

−+

+− which of the following is false? 

 (a) y = 2/5 is a horizontal asymptote   (b) x = 2/5 is a vertical asymptote 

 (c) x = 1 is a vertical asymptote   (d) x = – 1 is a vertical asymptote 

Sol. The given curve is (5x2 + 3x – 2) = 2x2 – 5x + 8 or, x2 (5y – 2) +… = 0 

 Equating to zero the coefficient of x2, we get 

 5y – 2 = 0 ⇒  y = 2/5 

 ∴y = 2/5 is a horizontal asymptote.  

Now from the given equation y (5x – 2) (x + 1) – (2x2 – 5x + 8) = 0 

Equating to zero the coefficient of y, we get, 

 5x – 2 = 0, x + 1 = 0  x = 2/5, x = –1 

∴Vertical asymptotes are x = 2/5, x = – 1.  

Hence (1), (2) and (3) are correct and (2) is false. Ans. (b) 
 

LENGTH OF VALUE 

Tangent 'y

y 2' )y(1+  

Normal y 2' )y(1+  

sub tangent 'y
y  

sub normal y y '  
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ASYMPTOTES OF ALGEBRAIC CURVES  

An asymptote which is not parallel to y-axis is called an oblique asymptote.  

Let y = mx + c be an asymptote curve of y = f (x), then 

m = 
∞→

∞→
yor

xlim
x
y and c = 

∞→
∞→

yor
xlim (y – mx) 

Working Rule 

Suppose y = mx + c is an asymptote of the curve.  

Put y = mx + c in the equation of the curve and arrange it in descending of two highest degree terms.  

Solve these two equation find m and c.  

Put them in the equation y = mx + c to get asymptotes.  

 

2. The asymptotes of x3 + 2x2 y – xy2 – 2y3 + 2xy + y – 1 = 0 are given by 

 (a) x – y + 1 = 0, x + y – 1 = 0, x  + 2y = 0   (b) x – y – 1 = 0, x + y + 1 = 0, x + 2y = 0 

 (c) x – y + 2 = 0, x + y – 4 = 0, x + 2y = 0  (d) none of these 

Sol. Put y = mx + c in the equation of the curve, we get 

 x3 + 2x2 (mx + c) – x (mx + c)2 – 2 (mx + c)3 + 4 (mx + c)2 + 2x (mx + c) + (mx + c) – 1 = 0 

 or, x3 (1 + 2m – m2 – 2m3) + x2 (2c – 2mc – 6m2c + 4m2 + 2m) +… = 0 

 Equating to zero the coefficient of two highest degree terms in x, we have 

 1 + 2m – m2 – 2m3 = 0  … (1)  

 and c (1 – m – 3m2) + 2m2 + m = 0  … (2) 

 (1) gives m = 1, – 1, – ½    and    c = 1, 1, 0  

Hence the asymptotes are  

 y = x + 1, y = – x + 1, y = – 1/2 x   Answer: (a)  
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EXPANSION OF FUNCTIONS (INFINITE SERIES) 

Some functions of x can be expanded in ascending powers of x in the form of infinite series. 

 Maclaurin's series and Taylor's series are generally used for the same. 

 

MACLAURIN'S SERIES (OR THEOREM) 

Statement: Let f (x) be a function of x which can be expanded in powers of x and let the expansion be 

differentiable term by term any number of times, then 

    f (x) = f (0) + x f ' (0) + 
!2

x2
f " (0) + …+ 

!n
xn

f n (0) +… 

EXAMPLES 

1. Expand sin x by Maclaurin's series    

Sol. Let y = sin x, then y n = sin ⎟
⎠

⎞
⎜
⎝

⎛ π
+

2
nx .  

Putting x = 0, we get (y)0 = sin 0 = 0 and (y n)0 = sin (nπ/2) … (i)  

Putting n = 1, 2, 3, 4, …in (i) we get,  

(y1)0 = sin ½(π) = 1; (y2)0 = sin π = 0; (y3)0 = sin 3/2π = – 1 ; (y4)0 = sin π = 0, etc.  

Now by Maclauring's Series, we have  

y = (y)0 + x (y1)0 + x2/2! (y2)0 + x3/3! (y3)0 +…+ xn/n! (yn)0 +… 

 ∴sin x = 0 + x (1) + x2/2! (0) + x3/3! (– 1) +…+ xn/n! sin nπ/2 +… 

    = x – x3/3! + x5/5! +…+ xn/n! (– 1)(n – 1) / 2 +…, where n is an odd number,  

Since sin ½ (nπ) = 0, if n is even  

and (– 1)(n – 1)/2, if n is odd. 

 

2. Expand eax by Maclaurin's Theorem. 

Sol. Let y = eax, then yn = an eax.  

∴Putting x = 0 we get, (y)0 = e0 = 1; (yn)0 = ane0 = an … (i) 

 Putting n = 1, 2, 3,….. in (i), we have  

(y1)0 = a;  (y2)0 = a2;  (y3)0 = a3;  (y4)0 = a4 ;  etc 

 ∴By Maclauring's theorem, we get  

ex = (y)0 + x (y1)0 + x2/2! (y2)0 + x3/3! (y3)0 + xn/n! (yn)0+…  

    = 1 + xa + x2/2! a2 + x3/3! a3 +…+ xn/n! an +… 
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3. Expand esin x by Maclaurin's Theorem. 

Sol. y = esin x Then, y1 = esin x cos x = y cos x;  

∴ y2 = y1 cos x – y sin x;  

 y3 = y2 cos x – 2y1 sin x – y cos x;  

y4 = y3 cos x – 3y2 sin x – 3y1 cos x + y sin x; 

 y5 = y4 cos x – 4y3 sin x – 6y2 cos x + 4y1 sin x + y cos x, etc.  

Putting x = 0, we get,  

(y)0 = esin 0 = e0 = 1;  (y1)0 = (y)0 = cos 0 = 1;  (y2)0 = (y1)0 cos 0 – (y)0 sin 0 = 1; 

 (y3)0 = (y2)0 cos 0 – 2 (y1)0 sin 0 – (y)0 cos 0 = 0; 

 (y4)0 = (y3)0 cos 0 – 3 (y2)0 sin 0 – 3 (y1)0 cos 0 + (y)0 sin 0 = – 3 

 (y5)0 = (y4)0 cos 0 – 6 (y2)0 cos 0 + (y)0 cos 0 = – 3 – 6 + 1 = – 8  

∴By Maclaurin's theorem we get  

esin x = (y)0 + x (y1)0 + x2/2! (y2)0 + x3/3! (y3)0 + x4/4! (y4)0 + x5/5! (y5)0 +… 

         = 1 + x (1) + x2/2! (1) + x3/3! (0) + x4/4! (– 3) + x5/5! (– 8) +… 

        = 1 + x + ½ x2 – 1/8 x4 – (1/15) x5 +… 

 

TAYLOR'S SERIES (OR THEOREM) 

Statement -  Let f (x + h) be a function of h which can expanded in powers of h, and let the expansion 

be differentiable any number of times with respect to h, then  

    f (x + h) = f (x) + h f' (x) + 
!2

h2
f " (x) +…+ 

!n
hn

f (n) (x)+… 

Note: If we put x = 0 and h = x in this result, then we get Maclaurin's Theorem. 

 

Other forms of Taylor's Theorem 

√ Putting x = a, we have f (a + h) = f (a) + h f ' (a) + h2/2! f " (a) +…+ hn / n! f (n) (a) +… 

√ Putting x = h and h = a, we have f (a + h) = f (h) + a f ' (h) + a2/2! f" (h) +…+ an /n! f (n) (h) +… 

√ Putting h = (x – a) in form (1) above we get f (x) = (a) + (x – a) f ' (a) + 
!2
)ax( 2− f " (a) +…+   

!n
)ax( n− f (n) (a) +…. 
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EXAMPLES 

1. Show that log (x + h) = log h + x/h – x2/2h2 + x3/3h3 –….… 

Sol. Here we are to expand in powers of x. Thus we are to use the form  

f (x + h) = f (h) + x f ' (h) + x2/2! f" (h) + x3/3! f "' (h) + … (i)  

Here f (x + h) = log (x + h) 

 ∴f (h) = log h; f ' (h) = 1/h; f " (h) = –1/h2; f"' (h) = 2/h3 etc.  

∴Substituting these values in (i) we get  

log (x + h) = log h + x ⎟
⎠
⎞

⎜
⎝
⎛
h
1 + 

!2
x2

⎟
⎠

⎞
⎜
⎝

⎛−
2h
1 + 

!3
x3

⎟
⎠

⎞
⎜
⎝

⎛
3h

2 +… = log h + x/h – x2/2h2 + x3/3h3+…  

Hence proved 

 

2. Expand ex in powers of (x – 1) 

Sol. Here f (x) = ex = e(x – 1) + 1.  

Here we are to use the following form of Taylor's Theorem   

 f (x) = f (a) + (x – a) f ' (a) + (x – a)2 / 2! f " (a) + (x – a)3/3! f "' (a) +… (i)  

Here f (x) = ex  

 ∴f ' (x) = ex; f " (x) = ex; f "' (x) = ex; etc.  

Putting x = 1, we get f (1) = e; f ' (1) = e, f" (1) = e, f "' (1) = e etc. 

 ∴ From (i), putting a = 1; we get  

f (x) = f (1) + (x – 1) f ' (1) + (x – 1)2/2! f" (1) + (x – 1)3/3! f "' (1) +… or 

ex = e + (x – 1) e + (x – 1)2/ 2! e + (x – 1)3/3! e + …,  

= e 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+
−

+−+ ...
!3
)1x(

!2
)1x()1x(1

32
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PARTIAL DIFFERENTIATION 

 

Definition: Let u be a symbol which has a definite value for every pair of values of x and y, then u is 

called a function of two independent variables and y and is written u = f (x, y). 

 

Partial Differential Coefficients: The partial differential coefficients of f (x, y) with respect to x is 

defined as 
0x

Lim
→δ

 
x

)y,x(f)y,xx(f
δ

−δ+ , provided this limits exists and is written as 
x
f

∂
∂ or fx or Dx f. 

Therefore the partial differential coefficient of f(x, y) with respect to x is the ordinary differential 

coefficient of f(x, y) when y is regarded as constant. 

The partial differential coefficients of 
x
f

∂
∂  with respect to x and y are 

2

2

x
f

∂

∂ and 
xy
f2

∂∂
∂ respectively.  

The other notations for 
2

2

x
f

∂

∂ , 
xy
f,

yx
f 22

∂∂
∂

∂∂
∂ and 

2

2

y
f

∂

∂ are f xx, f xy,  f yx and f yy respectively  

Note:  

 1. 
xy
f2

∂∂
∂  means 

y∂
∂

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂
x
f  and 

yx
f2

∂∂
∂  means ⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

x
f

y
 

2. In all ordinary cases 
yx
f

xy
f2

∂∂
∂

=
∂∂

∂  

 

EXAMPLES 

1. Verify that  
xy

u
yx

u2

∂∂
∂

=
∂∂

∂ , when u is equal to x sin y + y sin x. 

Sol. Given u = x sin y + y sin x   … (i)  

Differentiating (i) partially with respect to x regarding y as constant, we get 

x
u
∂
∂ = sin y + y sin x          … (ii)  

Differentiating (i) partially with respect to y regarding x as constant, we get  

y
u
∂
∂  = x cos y + sin x      … (iii)  

Again, differentiating (ii) partially with respect to y regarding x as constant, we get 

 
xy
u2

∂∂
∂ = cos y + cos x             … (iv)  

And differentiating (iii) partially with respect to x regarding y as constant, we get  

yx
u2

∂∂
∂ = cos y + cos x         … (v) 
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From (iv) and (v) we get,  
yx
u2

∂∂
∂ = 

xy
u2

∂∂
∂   

Hence Proved 

2. Verify that 
yx
u2

∂∂
∂ =

xy
u2

∂∂
∂ , when u = log 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +

xy
yx 22

 

Sol. u = log 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +

xy
yx 22

= log (x2 + y2) – logx – logy    … (i) 

 Differentiating (i) partially with respect to x, we get  

x
1

yx
x2

x
1x2.

yx
1

x
u

2222 −
+

=−
+

=
∂
∂      … (ii). 

 Differentiating (i) partially with respect to y, we get  

y
1

yx
y2

y
u

22 −
+

=
∂
∂     … (iii) 

 Differentiating (ii) partially with respect to y, we get  

2222222

2

)yx(
x2

yx
1

y
x2

x
1

yx
x2

yxy
u

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+∂
∂

=
∂∂

∂ . 2y = – 4xy / (x2 + y2)2.    … (iv) 

Differentiating (iii) partially with respect to x, we get  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
−

+∂
∂

=
∂∂

∂
2222

2

yx
1

x
y2

y
1

yx
y2

xyx
u = 2y 

)yx(
xy4x2.

)yx(
1

22222 +
−=⎥

⎦

⎤
⎢
⎣

⎡

+
−      … (v)   

Therefore, from (iv) and (v) we get, 
yx

u
xy

u 22

∂∂
∂

=
∂∂

∂ . Hence proved 

 

3. If f = tan–1 (y/x), verify that 
yx
f

xy
f 22

∂∂
∂

=
∂∂

∂  

Sol. f = tan–1 (y/x)            … (i).  

Differentiating (i) partially with respect to x, we get    

2222 yx
y

x
y

)x/y(1
1

x
f

+
−

=⎟
⎠

⎞
⎜
⎝

⎛ −
+

=
∂
∂      … (ii) 

  Differentiating (i) partially with respect to y, we get 

222 yx
x

x
1.

)x/y(1
1

y
f

+
=

+
=

∂
∂  … (iii) 

 

 Differentiating (ii) partially with respect to y, we get  

222

22

22

2

)yx(
)y2)(y()1)(yx(

yx
y

yxy
f

+
−−−+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

∂
∂

=
∂∂

∂ = 222

22

)yx(
xy

+
− .   … (iv) 
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Differentiating (iii) partially with respect to x, we get 

 222

22

22

22

22

2

)yx(
xy

)yx(
)x2(x)1)(yx(

yx
x

xyx
f

+
−

=
+

−+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+∂
∂

=
∂∂

∂ .     … (v) 

Therefore, from (iv) and (v), we get  

yx
f

xy
f 22

∂∂
∂

=
∂∂

∂ .  

Hence proved 

 

4. u = sin–1 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−

yx

yx
, show that 

y
u

x
y

x
u

∂
∂

−=
∂
∂  

Sol. Given u = sin–1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−

yx
yx

 …..(i)  

Differentiating (i) partially with respect to x, we get, 

[ ] ( ) ( ) 4/1)xy(yxx2
y

yxx2
y2

.
)xy(4

1
+

=
+

   … (ii) 

or ( )( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

−
−=

∂
∂

4/1xyyxy2
x

x
y

y
u

x
y = ( ) x

u
)xy(yxx2

y
4/1 ∂

∂
=

+
,  

from (ii) or x 
y
uy

y
u

∂
∂

+
∂
∂ = 0.  

Hence Proved 

 

5. If u = sin–1 (x/y) + tan–1 (y/x), then show that 
y
uy

x
ux

∂
∂

+
∂
∂ = 0. 

Sol. Given u = sin–1 (x/y) + tan–1 (y/x)     … (i)  

Therefore { } ⎟
⎠

⎞
⎜
⎝

⎛−
+

+
−

=
∂
∂

222 x
y

)x/y(1
1

y
1.

)y/x(1

1
x
u  or therefore ( ) 2222 yx

yx

xy

x
x
u

+
=

−
=

∂
∂    … (ii),  

and from (i), { } ( ) 2222222 yx
xy

xy

x
y
uory

x
1.

)x/y(1
1

y
x

)y/x(1

1
y
u

+
+

−
−=

∂
∂

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

∂
∂     … (iii)  

Adding (ii) and (iii), we get  

y
uy

x
ux

∂
∂

+
∂
∂ = 0. Hence Proved 
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6. If u = log (x2 + y2 + z2), find the value of 
zy
u2

∂∂
∂  

Sol. Given u = log (x2 + y2 + z2)  

Therefore 
z
u
∂
∂ =

)zyx(
z2z2.

zyx
1

222222 ++
=

++
.  

Therefore ⎥
⎦

⎤
⎢
⎣

⎡

++∂
∂

=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

=
∂∂

∂
222

2

zyx
z2

yz
u

yzy
u = 2z [–(x2 + y2 + z2)2 2y] = 2222 )zyx(

yz4
++

−  

 

HOMOGENEOUS FUNCTIONS 

a0xn + a1xn–1 y + a2 xn–2 y2 + …… + anyn = xn is an expression in x and y in which every term is of degree n. 

Such a functions is called homogeneous function of x and y of degree n. Also, 

f (x, y) = a0xn + a1xn–1 y + a2 xn–2 y2 + …… + anyn = xn ).x/y(fx
x
ya...

x
ya

x
yaa n

n

n

2

210 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛+  

Hence every homogeneous function in x and y of degree n can by written as xn f (y/x) 

 

EULER'S THEOREM ON HOMOGENEOUS FUNCTIONS 

Statement: If (x, y) be a homogeneous function in x and y of degree n, then, 

   x nf
y
fy

x
f

=
∂
∂

+
∂
∂  

In general if  f (x1, x2, x3… xn) of degree n then x1 .nf
x
fx....

x
fx

x
fx

x
f

n
n

3
3

3
2

1
=

∂
∂

++
∂
∂

+
∂
∂

+
∂
∂  

 

EXAMPLES 

1. Verify Euler's Theorem for yn sin (y/x). 

Sol. Let u = yn sin (y/x) , then u is a homogeneous function in x and y of degree n. Then  

 
x
u
∂
∂ = yn cos ⎟

⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛

x
yx

x
y  or x

x
u
∂
∂ = – 

x
y 1n−

 cos ⎟
⎠

⎞
⎜
⎝

⎛
x
y   … (i)  

Also 
y
u
∂
∂ = yn cos ⎟

⎠

⎞
⎜
⎝

⎛
x
y . 

x
1 + nyn–1 sin ⎟

⎠

⎞
⎜
⎝

⎛
x
y  or y 

y
u
∂
∂  = 

x
y 1n+

cos ⎟
⎠

⎞
⎜
⎝

⎛
x
y + nyn sin 

x
y   … (ii).   

Adding (i) and (ii), we get x 
x
u
∂
∂ + y

y
u
∂
∂  = nyn sin 

x
y  = nu, which verifies Euler's Theorem for the given 

function. 
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2. Which of the following is false? 

 (A) If u = x2 + y2 + z2, then x
z
uz

y
uy

x
u

∂
∂

+
∂
∂

+
∂
∂ = 2u 

 (B) If u = x3 + y3 + z3 + 3xyz, then x
x
u
∂
∂  + y

y
u
∂
∂  + z

z
u
∂
∂  = 3u 

 (C) If u = (y/z) + (z/x) + (x/y), then x
z
uz

y
uy

x
u

∂
∂

+
∂
∂

+
∂
∂  = 2u 

 (D) If u = 
3

2

y2
x  + 

6

22

x
zy , then x 

x
u
∂
∂  + y

y
u
∂
∂  + z

z∂
∂ = –2u 

Sol. (A)  u = x2 + y2 + z2. Here u is a homogeneous function in three variables x, y and z of degree 2.  

Therefore by Euler’s Theorem, we get x
z
uz

y
uy

x
u

∂
∂

+
∂
∂

+
∂
∂  = 2u. Hence (A) is true.  

(B)  u = x3 + y3 +  z3. Here u is a homogeneous function in three variables x, y and z of degree 3. 

Therefore by Euler’s Theorem, we get x
x
u
∂
∂  + y

y
u
∂
∂  + z

z
u
∂
∂ = 3u. Hence (B) is true.  

 
(C) Given that u = (y/z) + (z/x) + (x/y). Here u is a homogeneous function in variables x, y and z of 

degree zero. Therefore by Euler’s theorem, we get x 
x
u
∂
∂  + y

y
u
∂
∂  + z

z∂
∂ = 0. ∴ (C) is not correct. 

(D) Given that u = 
3

2

y2
x  + 

6

22

x
zy . Here u is a function in x, y and z of degree –2.  

Therefore by Euler’s theorem, we get x
x
u
∂
∂  + y

y
u
∂
∂  + z

z∂
∂ = –2u. ∴ (D) is correct.   

   Answer: (C) 


